An Introduction to Statistical Learning
نویسندگان
چکیده
Statistics An Intduction to Stistical Lerning with Applications in R An Introduction to Statistical Learning provides an accessible overview of the fi eld of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fi elds ranging from biology to fi nance to marketing to astrophysics in the past twenty years. Th is book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classifi cation, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fi elds, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical soft ware platform.
منابع مشابه
Designing collaborative learning model in online learning environments
Introduction: Most online learning environments are challenging for the design of collaborative learning activities to achieve high-level learning skills. Therefore, the purpose of this study was to design and validate a model for collaborative learning in online learning environments. Methods: The research method used in this study was a mixed method, including qualitative content analysis and...
متن کاملTitle Data for an Introduction to Statistical Learning with Applications in R
August 29, 2013 Type Package Title Data for An Introduction to Statistical Learning with Applications in R Version 1.0 Date 2013-06-10 Author Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani Maintainer Trevor Hastie Suggests MASS Description The collection of datasets used in the book ‘‘An Introduction to Statistical Learning with Applications in R’’ License ...
متن کاملAn Introduction to Support Vector Machines and Other Kernel-based Learning Methods
This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. Students will find the book both stimulating and...
متن کاملNonresponse prediction in an establishment survey using combination of statistical learning methods
Nonrespose is a source of error in the survey results and national statistical organizations are always looking for ways to control and reduce it. Predicting nonrespons sampling units in the survey before conducting the survey is one of the solutions that can help a lot in reducing and treating the survey nonresponse. Recent advances in technology and the facilitation of complex calculations...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملInvestigating the Impact of Virtual Social Networks on Social Capital and Organizational Learning Capabilities with the Mediating Role of Helpful Activities
Introduction: The main topic of this research is to Investigating the Impact of Virtual Social Networks on Social Capital and Organizational Learning Capabilities with the Mediating Role of Helpful Activities. An important feature of social networks is that it has become a place to share knowledge, which in turn contributes to the quantitative and qualitative improvement of social capital. Thus...
متن کامل